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Gaussian units

Conversion from SI units: 4πε0 → 1
In vacuo D ≡ E
Permittivity of free space = 1
Coulomb interaction & Lorentz force:

V =
Q1Q2
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; f = Q

(
E +

1
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v × B
)

I don’t like to call these “CGS units”
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Free energy per crystal cell F (at zero T )

Independent variables:
Macroscopic E field
Macroscopic strain

↔
η

Conjugate variables:

↔
σ (

↔
η ,E) = − 1

Vcell

∂F
∂

↔
η

macroscopic stress

D(
↔
η ,E) = − 4π

Vcell

∂F
∂E

displacement field

At equilibrium
↔
σ= 0
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Why using E (not D) as independent variable

The microscopic field E(micro)(r) is the only real electric
field inside the material

The macroscopic field E is the macroscopic average of
E(micro)(r) (see e.g. Jackson)

For a crystalline material:
macroscopic average = cell average

E is sometimes called “internal screened field”

E is actually controlled by the voltage at capacitor plates
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First order expansion

F(
↔
η ,E) = F0 +

∂F
∂

↔
η

∣∣∣∣∣
0

·
↔
η +

∂F
∂E

∣∣∣∣
0
· E + . . .

= F0 − Vcell
↔
σ0 ·

↔
η − Vcell

4π
D0 · E + . . .

We expand around “equilibrium”
Our choice for “equilibrium”:
the crystal structure having the lowest energy in zero field

Macroscopic strain
↔
η is the tensor which measures the

deviation from the equilibrium structure

Macroscopic stress
↔
σ0= 0

What about D0?
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High symmetry vs. low symmetry crystals

F(
↔
η ,E) = F0 − Vcell

4π
D0 · E + higher orders

From the general relationship D = E + 4πP at E = 0:

F(
↔
η ,E) = F0 − Vcell P0 · E + higher orders

Spontaneous polarization P0:
P0 = 0 in some high symmetry classes (e.g. GaAs)
P0 ̸= 0 in low symmetry classes (e.g. GaN)
Both GaAs and GaN are piezoelectric
Only GaN is piezoelectric under isotropic pressure

Free standing sample in zero external field:
Is E = 0? Equivalently, is F = F0?
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Harmonic expansion

F(
↔
η ,E) ≃ F0 − Vcell P0 · E

+
1
2

∂2F

∂
↔
η ∂

↔
η′

∣∣∣∣∣
0

↔
η

↔
η′ +

∂2F
∂

↔
η ∂E

∣∣∣∣∣
0

↔
η E +

1
2

∂2F
∂E ∂E′

∣∣∣∣
0

E E′

1
Vcell

∂2F
∂
↔
η ∂

↔
η′

∣∣∣∣
0

= Ĉ elastic constants (4th rank tensor)

− 1
Vcell

∂2F
∂
↔
η ∂E

∣∣∣
0

= ê piezoelectric constants (3rd rank tensor)

− 4π
Vcell

∂2F
∂E ∂E′

∣∣∣
0

= ε̂ dielectric tensor (2nd rank tensor)

All constants defined at
↔
η= 0 and E = 0
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Conjugate variables, to harmonic order

F(
↔
η ,E) ≃ F0 − Vcell P0 · E

+
1
2

Ĉ
↔
η

↔
η′ − ê

↔
η E − 1

2
ε̂E E′

σ = −Ĉ
↔
η +ê E

D = ê
↔
η +ε̂E + D0

σ = −Ĉ
↔
η +ê E

P = ê
↔
η +

1
4π

(ε̂− 1̂) E + P0

Piezoelectric tensor ê:
Stress linearly induced by a unit E at

↔
η= 0

Polarization linearly induced by a unit strain
↔
η at E = 0
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Measurement in zero E field

Sample between shorted metallic electrodes

+ + + + + +

< < < < < <

Measurement via the transient current: ∆P = ê
↔
η=

∫ ∆t

0
j(t)dt
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Measurement in zero D field

Insulating surfaces, sample in zero external field: E ̸= 0

+ + + + + +

< < < < < <

Simple case P0 = 0:

∆P = ê
↔
η +

1
4π

(ε̂− 1̂) E −→ P = ε̂−1ê
↔
η
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Free standing sample in zero external field

A finite macroscopic sample at zero stress σ
Field E(r) = 0 in vacuo far away from the sample

Is the internal field E = 0?
Is the strain

↔
η= 0?

Answer: Yes and No!

Yes, for a material with no spontaneous polarization (e.g.
GaAs)
No, for a material with spontaneous polarization (e.g.
GaN): both E and

↔
η depend on the shape of the sample.
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Free standing sample in zero external field:
The trivial case (P0 = 0)

If E(ext) = 0 then E = 0 and D = 0 inside the material

The main equations at zero stress σ

σ = −Ĉ
↔
η +ê E

D = ê
↔
η +ε̂E

imply zero strain η
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Free standing sample in zero external field:
The nontrivial case (P0 ̸= 0)

Even if E(ext) = 0, the internal field E ̸= 0
The internal field is constant if and only if the sample is
ellipsoidal
The slab and the cylinder are limiting cases of ellipsoids
E is called depolarization field
The E value is governed by the depolarization
coefficients

Simplest geometry: a slab
If P is normal to the slab, then E = −4πP
If P is parallel to the slab, then E = 0
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Free standing sample in zero external field:
The nontrivial case (P0 ̸= 0)

x

z

+ + + + + +

− − − − − −

Macroscopic polarization P in a slab normal to z, for a
vanishing external field E(ext)

When P is normal to the slab, a depolarizing field
E = −4πP is present inside the slab, and charges at its
surface, with areal density σsurface = P · n
When P is parallel to the slab, no depolarizing field and no
surface charge is present
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Free standing sample in zero external field

The main equations:

σ = −Ĉ
↔
η +ê E

P = ê
↔
η +

1
4π

(ε̂− 1̂) E + P0

For P0 parallel to the slab:
at zero stress E = 0,

↔
η= 0,P = P0

For P0 normal to the slab:
at zero stress E = −4πP,

↔
η ̸= 0, P ̸= P0
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Piezoelectric response of a slab (open circuit)

+ + + + + +

< < < < < <

P = ê
↔
η +

1
4π

(ε̂− 1̂) E + P0

E = −4πP −→ P = ε̂−1(ê
↔
η +P0)

Open/closed circuit measurements yield very different results!
In GaN ε0 = 8.9, ε∞ = 5.35
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Is piezoelectricity really a bulk material property?

So far, we have assumed phenomenologically that
piezoelectricity is a bulk material property.
What about microscopics?

Bulklike nature of piezoelectricity challenged
until the mid 1980s.
First calculation ever of piezoelectricity in 1989
(not based on Martin’s theory).
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Zincblende vs. Wurtzite

Zincblende: III-V’s (not nitrides)
Wurtzite: Nitrides & many II-VI’s

Ideal W: c0/a0 = 1.6333

AlN 1.6008
GaN 1.6263
InN 1.6119
ZnO 1.602
ZnS 1.638

Zincblende vs. Wurtzite

ZB: Cubic, hence no vector property (such as P) is allowed.
W: The simplest crystal structure where a vector property is allowed.

How a series of computationschanged our viewof the polarization of solids – p. 29/61
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Zincblende vs. Wurtzite

Wurtzite:
Highest symmetry where P0 ̸= 0
Piezoelectric tensor has indepen-
dent components e33,e31,e15

Zincblende:
Tetrahedral symmetry: P0 = 0
Piezoelectric tensor has one
component
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Simple piezoelectric strain

Voigt notations:

strain along the c axis
η3 = (c − c0)/c0

isotropic in-plane strain
η1 = η2 = (a − a0)/a0

piezoelectric polarization:
P − P0 = e33η3 + e31(η2 + η3)
in zero field!

Zincblende vs. Wurtzite
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What the popular textbooks wrongly say

Kittel, Introduction to Solid State Physics:
A ferroelectric crystal exhibits an electric dipole moment
even in the absence of an external electric field. In the
ferroelectric state the center of positive charge does not
coincide with the center of negative charge.

Ashcroft & Mermin, Solid State Physics:
Crystal whose natural primitive cells have a
nonvanishing dipole moment p0 are called pyroelectric.
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The reference book about ferroelectrics in the 1980s

Lines & Glass, Principles and Applications of
Ferroelectrics and Related Materials (1977):

If and when good electron-density maps become
available for ferroelectrics, expressing charge density ρ(r)
as a function of position vector r throughout the unit cell,
more quantitative estimates of spontaneous polarization
might be envisaged as

Ps =
1
V

∫
V

r ρ(r) dr. (6.1.19)

Focus invariably on the charge density
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Where the problem is (after Feynman, Vol. 2)
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the periodic charge of a polarized dielectric

(contrary to common statements in textbooks)
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Spontaneous polarization: the “new” paradigm (1990)

Zincblende:
P0 = 0 by symmetry

Wurtzite:
Simplest crystal structure where P0 ̸= 0

Zincblende vs. Wurtzite

ZB: Cubic, hence no vector property (such as P) is allowed.
W: The simplest crystal structure where a vector property is allowed.

How a series of computationschanged our viewof the polarization of solids – p. 29/61
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The basic idea

The basic equation ∇ · P = −ρ
implies ∆P · n = −σ

Since P0 = 0 in the zincblende slab
by measuring σ we infer the value of P0 in the wurtzite slab
Actually, ∆P = P0/ε (longitudinal!)
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The computer experiment
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The paradigm change

We have not computed the absolute polarization of the W
material; instead, we have computed a polarization difference:
Wurtzite minus Zincblende.

It is only an additional symmetry argument which allows us to
infer the value of P0 from the calculation.

In our material (wurtzite BeO) how is spontaneous polarization
measured?

We discovered (after our computer experiment) that it is not
really measured! Reading the experimental literature we only
found some estimates of the spontaneous polarization in BeO.

Slowly, we came to the idea that the concept of “polarization
itself” doesnt make sense, and we must content ourselves of
addressing polarization differences (or derivatives).



. . . . . .

How is polarization measured?

Infrared charges, a.k.a. Born effective charges for lattice
dynamics:
Derivatives of P with respect to zone-center phonon amplitudes

Permittivity, a.k.a. macroscopic dielectric constant (or tensor):
Derivative of P with respect to an external applied field.

Piezoelectricity:
Derivative of P with respect to macroscopic strain.

Pyroelectricity:
Derivative of P with respect to temperature.

“Spontaneous” P in ferroelectrics:
What is actually measured?
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Main message revisited

Macroscopic polarization has nothing to do with the
periodic charge of a polarized dielectric
Instead, the polarization difference is an integrated
transient current

+ + + + + +

< < < < < <

∆P =

∫ ∆t

0
j(t)dt
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The Berry phase formula (1992-93)

In quantum mechanics the current is mostly related to the
phase of the wavefunction
(not to the square modulus!)
The by now famous King-Smith & Vanderbilt formula
(electronic term only, one dimension, one band):

P(1) − P(0) =

∫ 1

0

dP
dλ

dλ = −e
π

[γ(1) − γ(0)]

The Berry phase:

γ = i
∫

BZ
⟨uk |

d
dk

uk ⟩ dk

uk (x) = e−ikxψk (x) is the periodic part of the Bloch function
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20 years on........

Most electronic-structure computer codes on the market
implement the Berry phase as a standard option:
CRYSTAL, QUANTUM-ESPRESSO, ABINIT, VASP,
SIESTA, CPMD...

Textbooks are slow to catch: most of them give a flawed
definition of what polarization is
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Everything you always wanted to know about
polarization & magnetization but were afraid to ask:

IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 22 (2010) 123201 (19pp) doi:10.1088/0953-8984/22/12/123201

TOPICAL REVIEW

Electrical polarization and orbital
magnetization: the modern theories
Raffaele Resta

Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy
and
CNR-INFM DEMOCRITOS National Simulation Center, Trieste, Italy

Received 7 December 2009, in final form 5 February 2010
Published 11 March 2010
Online at stacks.iop.org/JPhysCM/22/123201

Abstract
Macroscopic polarization P and magnetization M are the most fundamental concepts in any
phenomenological description of condensed media. They are intensive vector quantities that
intuitively carry the meaning of dipole per unit volume. But for many years both P and the
orbital term in M evaded even a precise microscopic definition, and severely challenged
quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric
(magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary,
due to the presence of the unbounded position operator in the dipole definitions. Therefore P
and the orbital term in M—phenomenologically known as bulk properties—apparently behave
as surface properties; only spin magnetization is problemless. The field has undergone a
genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has
nothing to do with the periodic charge distribution of the polarized crystal: the former is
essentially a property of the phase of the electronic wavefunction, while the latter is a property
of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current
distribution in the magnetized crystal. The modern theory of polarization, based on a Berry
phase, started in the early 1990s and is now implemented in most first-principle electronic
structure codes. The analogous theory for orbital magnetization started in 2005 and is partly
work in progress. In the electrical case, calculations have concerned various phenomena
(ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in
spectacular agreement with experiments; they have provided thorough understanding of the
behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first
calculations are appearing at the time of writing (2010). Here I review both theories on a
uniform ground in a density functional theory (DFT) framework, pointing out analogies and
differences. Both theories are deeply rooted in geometrical concepts, elucidated in this work.
The main formulae for crystalline systems express P and M in terms of Brillouin-zone integrals,
discretized for numerical implementation. I also provide the corresponding formulae for
disordered systems in a single k-point supercell framework. In the case of P the single-point
formula has been widely used in the Car–Parrinello community to evaluate IR spectra.

Contents

1. Introduction 2
2. Macroscopics 2

2.1. Fundamentals 2
2.2. Finite samples and shape issues 3

3. Microscopics 4
4. DFT, pseudopotentials, and more 5

5. Linear response 6
5.1. Linear-response tensors 6
5.2. Electrical case: pyroelectricity, piezoelectric-

ity, and IR charges 7
5.3. A closer look at IR charges (Born effective

charge tensors) 7
5.4. Magnetic case: NMR shielding tensor 8

6. Modern theory of polarization 8
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Milestones

Bulklike nature of piezoelectricity established in 1972
by R.M. Martin , but challenged until the mid 1980s

First calculation ever of piezoelectricity in 1989 by us:
Zincblende III-V’s, using linear response theory

Most modern calculations, routinely:
Numerical differentiation using the Berry phase theory
(Wurtzite ZnO by us in 1994)
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Parsing linear piezoelectricity

Circles represent crystal planes
(normal to the wurtzite c axis)

First step: uniform strain (a.k.a. clamped ion) (difficult!)

Second step: internal strain (easy: zone-center phonon)
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Calculations for the wurtzite materials
(Bernardini, Fiorentini,& Vanderbilt 1997, 2011)

e(0)
33 e33

AlN −0.47 1.46
GaN −0.84 0.73
InN −0.88 0.97
ZnO −0.66 0.89

e(0)
33 : “clamped ion” term

e33: sum of the two terms

Trends:
The two terms are different in sign and compete
Balance is opposite in zincblende III-V’s
Absolute values rather large, not far from ferroelectrics



. . . . . .

Calculations for the wurtzite materials
(Bernardini, Fiorentini,& Vanderbilt 1997, 2011)

e(0)
33 e33

AlN −0.47 1.46
GaN −0.84 0.73
InN −0.88 0.97
ZnO −0.66 0.89

e(0)
33 : “clamped ion” term

e33: sum of the two terms

Trends:
The two terms are different in sign and compete
Balance is opposite in zincblende III-V’s
Absolute values rather large, not far from ferroelectrics



. . . . . .

Outline

1 Fundamentals & macroscopic (phenomenological) theory

2 Wurtzite structure

3 Textbooks’ fallacies about polarization (induced &
spontaneous)

4 A change of paradigm

5 Microscopic approach to piezoelectricity

6 A more difficult problem: flexoelectricity



. . . . . .

Phenomenological tensors (3rd & 4th rank)

Pα = eαβγ ηβγ

Piezoelectricity
(needs low symmetry)

Pα = µαβγδ ∇βηγδ

Flexoelectricity
(nonzero in any symmetry)

Are eαβγ and µαβγδ bulk properties?

Can they be computed using periodic boundary
conditions?

Does such tensors make any sense?
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Why a wave of interest in flexoelectricity?

Effect negligible at macroscopic length scales, possibly
very strong at the nanoscale

It looks very promising for electromechanical coupling
using nonpiezoelectric materials

Actual devices have been realized (e.g. at Penn State)

It is not at all clear whether the µαβγδ are genuine
bulk material properties

The distorted crystal lacks any lattice periodicity:
This makes the problem difficult for us theorists!
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The simplest case: Elemental crystal, primitive lattice

µxxxx

µxxxx is a well defined bulk property in elemental crystals
(R. Resta, PRL 2010)
Work for nonprimitive lattices in progress:
M. Stengel, http://arxiv.org/abs/1306.4240,
posted last week!
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