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OUTLINE
From the crystal to its electronic band structure 

• LCAO-2 atoms

• LCAO-linear chain

• Bloch functions

• Crystal

• Cubic GaN

• Wurzite GaN and AlN



LCAO-2 atoms

Linear Combination of Atomic Orbitals
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One electron in the potential of an isolated atom:

Atom i

One finds levels with principal 

quantum number n, and with sub

levels s,p,d… defined by the angular

momentum number l,…
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Linear combination of atomic orbitals

1 2

When atoms come close to each other, the electron 

wavefunction is delocalized on atoms 1 and 2 :



12121221212202212011

21211211211221022011 





EcEcVcVcEcEc

EcEcVcVcEcEc

+=+++

+=+++

Develop and project on 1 and 2

( ) ( )

( ) ( )
0

212021221201

211210212101
=

+−+−

+−+−





VEEVEE

VEEVEE

• Can be solved as it is ☺

• But it can be simplified by introducing assumptions 

which are done in the real semiconductor band structure 

calculations based on this approach (Tight Binding) ☺☺

Tight binding works well for directional bonds typical for semiconductors



𝐸01 − 𝐸 + 𝜑1ห𝑉2 𝜑1 𝐸02 − 𝐸 𝜑1 𝜑2 + 𝜙1ห𝑉1 𝜙2

𝐸01 − 𝐸 𝜑2 𝜑2 + 𝜙2ห𝑉2 𝜙1 𝐸02 − 𝐸 + 𝜑2ห𝑉1 𝜑2

= 0

𝜑1 𝜑2 = 0

Describes the effect of the potential of atom 2 on the energy in atom 1, and vice 

versa. It is a shift of the energy, with no important effect.

(when atoms are different or with less trivial symmetries, it has an effect). 

Let us renormalize the energies :

Not strictly true. In addition E02-E is expected to be small

𝐸1 = 𝐸01 + 𝜑1ห𝑉2 𝜑1
𝐸2 = 𝐸02 + 𝜑2ห𝑉1 𝜑2

𝜑1 𝑉2 𝜑1 = 𝜑2 𝑉1 𝜑2 by symmetry
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VEE = 1
If atoms are identical: E1=E2

E1 E1
2V

2 new energy eigenvalues 

𝐸 =
(𝐸1 + 𝐸2)

2
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𝐸1 − 𝐸2
2

)2 + 𝑉2
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2 new eigen states
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state



E2

E1

Not identical atoms

We still have

½(E1+E2)

𝐸 =
(𝐸1 + 𝐸2)

2
± (

𝐸1 − 𝐸2
2

)2 + 𝑉2

bonding

antibonding
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When E1-E2 increase, the bonding state gets

closer to the lower energy level (E1) and the 

antibonding state closer to the higher level (E2)



E2

E1

Not identical atoms

½(E1+E2)

bonding

antibonding

The bonding states 

concentrates on atom 1 

which has the lower energy

The antibonding states 

concentrates on atom 2 

which has the higher energy

Remember that !
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3 things to remember:

• 2 initial orbitals  2 levels

• shift of the energies+ splitting

• bonding and antibonding states



LCAO-linear chain



N atoms 

in a chain

NNccccc  +++++= ...44332211

Again, we use: 

orthogonality

renormalization
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One keeps nearest neighbours interactions only:

1 2 3 4 N-1 N

……

V<0
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Identical atoms, En = E0



Energy levels as a function of the number of atoms

Levels are distributed over an energy band of width  2V

This behavior appears as soon as N >5
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Bloch functions



what are the new eigen states associated 

with the energy eigenvalues ? = nnc 

For each energy, one calculates the cn coefficient and the wavefunction :

The wavefunction spacially oscillates

more when energy increases

Open chain
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we take n=gaussian centered on each atom n 
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eigen states :
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Number of zeros in WF

 10 atoms

WF amplitude becomes more and more 

uniform (singular extremities are less

visible)

Wavefunction oscillates more in space

when energy increases

= nnc 
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For large N, the system is periodic (all atoms identical), period = a 

General solution :

 

V<0

= nnc 

NB: one initial level per atom  one band

M levels  M bands
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What is the variation range for k ? 

Lowest energy:   k=0

V<0

Highest energy  k=/a 

Constant wavefunction

WF oscillates at each

atom (N zeros)
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𝐸 − 𝐸0 = −2 𝑉

𝐸 − 𝐸0 = +2 𝑉
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in a chain

1D chain with a single 

atomic  level

k

3D crystal with m levels 

and j atoms per unit cell 
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Sum over the crystal cells, period rjn

Each eigen state can be indexed by k and E(k):

Bloch function 

in a crystal



We build the wavefunction on this complete set of Bloch functions :

 =
jm

kjmjmk a
,

kkk EH =

The total system is described by :



Crystal with cubic symmetry



Crystal structure
Easy case: Zinc blende or diamond (same atom) structure

2 FCC shifted by 1/4 of diagonal

1 FCC with 2 atoms per lattice point: no inversion symmetry !

4+4 atoms per FCC  cell but FCC cell = 4 primitive cells*  2 atoms per cell (j=2)

*with unit vectors between a corner and center of adjacent faces of the cube



sp3

4 bonds for each atom with 109°

angle: sp3 hybridization

C: 1s2 2s2 2p2 and Si: 1s2 2s2 2p6 3s2 3p2

The electronic orbitals which couple to each

other are the most external: s and p. 

4 levels per atom are needed in the calculation (m=4)

Methane

C: 1s2 2s2 2p2 C: 1s2 4×sp3
With 109° bonds to 

maximize the 

distance between H



Crystal structure
Hybrid functions sp3

x

y

z

1=s+px+py+pz

2=s+px-py-pz

3=s-px+py-pz

4=s-px-py+pz

ijji  =

atom 1

ijjii AV  −=' For i and j orbital pointing towards

each other and interaction restricted to 

nearest neighbor

1’=s’-p’x-p’y-p’z

2’=s’-p’x+p’y+p’z

3’=s’+p’x-p’y+p’z

4’=s’+p’x+p’y-p’z

atom 2 Atom 1

Atom 2

orthogonality

[Leman and Friedel 1962]



Band structure calculation
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1,2 : atom

level: 1,2,3,4

Projection on the 8 j,m functions,

 8 linear relations  Determinant D8=0  8 solutions = 8 bands

All atomic cells of 

the crystal

The sum over all cells (n) leads to the contribution of the 4 nearest neighbours



Band structure calculation
Case of diamond
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The basis is the hybrid orbitals 1,2,3,4 and ’1,2,3,4

1 2 3 4 ’1 ’2 ’3 ’4

Mean energy Crystal structure, 

symmetry is involved here

only, between atom 1 and 

atom 2



Sapoval & Hermann, 

cours Polytechnique 1988

x=E-Ep;   =1/4n

8 bands: 

• x=E-Ep= +/- A, flat bands, doubly degenerate

• 4 non degenerate bands

A = 3𝛿

𝑥2 − 𝐴2 2(𝑥2 + 2𝛿𝑥 − 𝐴2 + 2𝛿𝐴𝜙)(𝑥2 + 2𝛿𝑥 − 𝐴2 − 2𝛿𝐴𝜙) = 0

x1=A

x2=-A

𝛿 =
(𝐸𝑝 − 𝐸𝑠)

2

Complicated ! Let us focus at k=0 (G)
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Cubic case at k=0

=1/4n=1

𝑥2 − 𝐴2 2(𝑥2 + 2𝛿𝑥 − 𝐴2 + 2𝛿𝐴)(𝑥2 + 2𝛿𝑥 − 𝐴2 − 2𝛿𝐴) = 0

𝑥2 − 𝐴2 2(𝑥 + 𝐴)(𝑥 + 2𝛿 − 𝐴) (𝑥 − 𝐴)(𝑥 + 2𝛿 + 𝐴) = 0

𝑥 = −𝐴 (×3)

𝑥 = 𝐴 (×3)

𝑥 = 𝐴 − 2𝛿 (×1)

𝑥 = −𝐴 − 2𝛿 (×1)

x=E-Ep 𝛿 =
(𝐸𝑝 − 𝐸𝑠)

2

𝐸 = 𝐸𝑝 + 𝐴

𝐸 = 𝐸𝑝 − 𝐴

𝐸 = 𝐸𝑠 + 𝐴

𝐸 = 𝐸𝑠 − 𝐴



Cubic case at k=0

We focus on the eigen value E=Ep −A, we have 3 degenerate bands (valence 

bands) and we try to find the 3 eigen vectors

x2=-A

x1=A

(×3)

(×3)

(×1)

(×1)

𝐸 = 𝐸𝑝 + 𝐴

𝐸 = 𝐸𝑝 − 𝐴

𝐸 = 𝐸𝑠 + 𝐴

𝐸 = 𝐸𝑠 − 𝐴

Eg=2(A−)=2A-(Ep-Es)



Cubic case

-A+/2 /2 /2 /2 A 0 0 0

/2 -A+/2 /2 /2 /2 A 0 0

/2 /2 -A+/2 /2 /2 0 A 0

/2 /2 /2 -A+/2 /2 0 0 A

A 0 0 0 -A+/2 /2 /2 /2

0 A 0 0 /2 -A+/2 /2 /2

0 0 A 0 /2 /2 -A+/2 /2

0 0 0 A /2 /2 /2 -A+/2

1 2 3 4 ’1 ’2 ’3 ’4

c1

c2

c3

c4

c1’

c2’

c3’

c4’

=

0

0

0

0

0

0

0

0

k=0 and E=Ep −A

Solve the system to find the ci coefficients…



Cubic case at k=0 and E=Ep −A

WF1= 1 + 2 - 3 - 4 + ’1 + ’2 - ’3 - ’4 ~ px - p’x

WF2~ py - p’y

WF3 ~ pz – p’z

The 3 eigen vectors corresponding to the 3 fold degenerate bands 

at G in a cubic crystal are px, py ,pz orbitals ! Not a real surprise !

𝐻 =
𝐸 0 0
0 𝐸 0
0 0 𝐸

In this basis, the Hamiltonian of a cubic crystal for the valence 

band at G is

One finds :



sp3 sp3

Es

Ep

Es

Ep3
3

4 4

8 levels/bands

Si: 1s2 2s2 2p6 3s2 3p2 Si: 1s2 2s2 2p6 3s2 3p2

• Some levels might be degenerated for some values of k

• In particular, at k=0, ×3 degeneracy with px,py,pz wavefunctions

• Could it be expected ?



Es

Ep

Es

Ep
3 3

8 bands

Alternatively, on can keep the s and p orbitals for the basis and obtain a similar

determinant (through a change of basis) and the same energies (Chadi and Cohen)

with

=0

[Slater and Koster, 1954;Chadi and Cohen, 1975]



Es

Ep

Es

Ep
3 3

2+6 levels at k=0

At k=0, the picture is simple: the symmetry of the system (crystal+electron

wavefunction) becomes the symmetry of the crystal (eikr=1=constant in the crystal)

 We can expect that the electronic levels at k=0 keep the cubic symmetry

(the symmetry group of the k=0 vector is the crystal symmetry group)

3

3

1 1
1

1

Question: ordering of the singulets and triplets ? What

is the important parameter for the ordering ?

E=Ep+/−𝐴

E=Es+/−𝐴

2A

2A



k=0

Metal versus semiconductor

Es

Ep

Es

3

Ep
3

3

3

C: 1s2 2s2 2p2

Si: 1s2 2s2 2p6 3s2 3p2

2 𝐴 < 2𝛿 = 𝐸𝑝 − 𝐸𝑠

We have to fill the bands (the level here at k=0) with all electrons

How many ?



k=0

Metal versus semiconductor

Es

Ep

Es

3

Ep
3

3

3

4 

electrons

4 

electrons

C: 1s2 2s2 2p2

Si: 1s2 2s2 2p6 3s2 3p2

2 𝐴 < 2𝛿 = 𝐸𝑝 − 𝐸𝑠

2 electrons per level (spin)

The Fermi level is in a band: metal



k=0

Metal versus semiconductor

Es

Ep

Es

3
Ep

3

3

3

4 

electrons
4 

electrons

C: 1s2 2s2 2p2

Si: 1s2 2s2 2p6 3s2 3p2

2 𝐴 > 2𝛿 = 𝐸𝑝 − 𝐸𝑠

2 electrons per level (spin)

The Fermi level is between two bands: insulator or semiconductor

with a gap between valence and conduction bands, equal to

Eg=Es+A-(Ep-A)=Es-Ep+2A 



Es

Ep
3

Band structure calculation

3 VB

CB

k

k=0: VB = pure p ; CB= pure s *

k0 : CB and VB mixt s and p

* within this model

E



AV jii −=

Es

Ep

Band structure calculation

3 VB

CB

CB-VB Gap

Egap increases with A : increases for short bonds

Ep-Es  cte for usual atoms : C Si Ge

Ep-Es (eV) 7.4 7.2 8.41

Prediction: Gap larger with shorter bonds

2A

Eg=2(A−)



Bang gap versus bond
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direct or indirect bandgap
E

k

conduction band

valence band

Direct gap

E

k

conduction band

valence band

Direct gap

E

k

conduction band

valence band

Indirect gap

E

k

conduction band

valence band

Gap ?



Group IV semiconductors

Eg=1.12 eV
(SO négligé. En fait 

Eso=44 meV)

Eg=0.67 eV

Eg=5.5 eV

All indirect gap SC: but can

become direct under pressure. 

This cannot be simply predicted

Diamant (C)

6 minima de BC  

en X= (100)

8 minima de BC  

en L= (111)

When Z increases:

• Gap decreases ☺

• VB splitting (2+1) at k=0  ?



From Si to III-V

We obtained the band structure of a column IV diamond crystal

with no spin

• To get cubic GaN with no spin: introduce atom 1  atome 2



Cubic GaN



Compound semiconductor

Band structure calculation

Es(-11.3eV)

Ep(-4.9 eV)
3

3
3

3

Ga

N

Ep(-11.5 eV)

Es(-23.0eV)

0

-10

-20

Valence band is more element V (N)

Conduction band is more element III (Ga)

energy

Remember remark in slide 16 on the wavefunction probability in the molecule with 2 different atoms

Valence band

Conduction band



Cubic materials

0

2/2/2/*000

2/2/2/0*00

2/2/2/00*0

2/2/2/000*

0002/2/2/

0002/2/2/

0002/2/2/

0002/2/2/

3

2

1

0

3

2

1

0

=

































−

−

−

−

−

−

−

−

m

m

m

m

m

m

m

m

EEA

EEA

EEA

EEA

AEE

AEE

AEE

AEE

















1 2 3 4 ’1 ’2 ’3 ’4

v
v

v

v
v

v

v

v

−𝐴 = 𝜑𝐺𝑎,𝑚 𝑉𝐺𝑎 𝜑′𝑁,𝑚 = 𝜑𝐺𝑎,𝑚 𝑉′𝑁 𝜑′𝑁,𝑚

Ga N

𝐸𝑚
𝐺𝑎 = (𝐸𝑠

𝐺𝑎+3𝐸𝑝
𝐺𝑎)/4 𝐸𝑚

𝑁 = (𝐸𝑠
𝑁+3𝐸𝑝

𝑁)/4

𝛿𝐺𝑎 = (𝐸𝑝
𝐺𝑎 − 𝐸𝑠

𝐺𝑎)/2 𝛿𝑁 = (𝐸𝑝
𝑁 − 𝐸𝑠

𝑁)/2

Remember slide 14, remark on hermitian Hamiltonian



Cubic GaN, 

GaAs, GaP

Same features for all : cubic symmetry

Valence band 3x degenerate (we exclude spin for 

the moment !)

NB: GaP has an indirect gap: cannot be easily

predicted

GaN

GaAs with spin



Es

Ep

Band structure calculation

3

VB

CB

k

The 3-fold degeneracy of the VB at 

k=0 is lifted. Why ?

Spin orbit interaction splits the levels with different J 2+1

2

1



Band structure

Spin orbit coupling in atoms: 
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Relativistic effect

Depends on electron 

orbit (weak for 

external layer) and  

cinetic moment 

Depends on atom size 

(dV/dr) as Z2

Weak for light atoms in particular for N 



Spin orbit splitting in semiconductors :

 separates levels with different orbital moments.

In direct semiconductors, and in particular close to the G point, the conduction 

band is made of s states (l=0, j=1/2) and the valence band is made of p states 

(l=1, j=1/2 or 3/2)

 No effect on conduction band 

 Splitting of the valence band Dso

SL
r

V

rcm

e
H .

1

2 22 


=

2𝐿. Ԧ𝑆 = (𝐿 + Ԧ𝑆)2−𝐿2− Ԧ𝑆2= Ԧ𝐽2 − 𝐿2− Ԧ𝑆2=J(J+1)-L(L+1)-S(S+1)

𝐿. Ԧ𝑆 = 1/2 3/2(3/2+1)−1(1+1)−1/2(1/2+1) =1/2J=3/2

𝐿. Ԧ𝑆 = 1/2 1/2(1/2+1)−1(1+1)−1/2(1/2+1) =-1J=1/2

×3 × 2 J=3/2, Jz=-3/2,-1/2,1/2,3/2

J=1/2, Jz=-1/2,1/2

×4

×2

SOC

L=1,S=1/2

Lz=-1,0,1, Sz=-1/2,1/2

NB: we do not have E(k,)=E(k,) any more but we still have E(k,)=E(-k,) (Kramers degeneracy, time symmetry) 

valence band :



Band structure
Spin orbit splitting in semiconductors :

As for atoms, SO in light 

semiconductors is small

SL
r

V

rcm

e
H .

1

2 22 


=

More precisely: Valence band is

dominated by p states coming from N: 

SO larger in GaAs than in GaN, but 

comparable in AlN and GaN



Wurtzite GaN

we focus on the k=0 (G) point



Zinc blend Wurtzite

A,B,C, A,B,C… A,B, A,B,…



From cubic to wurzite

# n cubic n wurzite

1st 12 12

2nd 3 3

3rd 6 2

uua 30.23/142 ==

uuc 66.23/8 ==

uua 63.13/8 ==

uua 82.283 ==

uua 30.23/142 ==

uua 63.13/8 ==

u

c

a Distance Ga to Ga



Wurtzite, Space groupe : n° 186;  P63mc; C6v

Unitary cell: 

• 2 Ga et 2 N in wurtzite = 4 atoms

• 1 Ga et 1 N in zinc blend = 2 atoms



From zinc blend to wurtzite

Seen from (111) of cubic

Seen from (100)

60° rotation around

the (111) axis



From zinc blend to wurtzite

We have calculated the H in the cubic referencial with the x,y,z

axes. At k=0, for the valence band, we have:

Neglecting spin, at k=0, we have Epx=Epy=Epz (3×degeneracy)

We want to express the H in the wurtzite referencial (X,Y,Z) 

where the c axis is the (111) direction of the cube.



Rotation (100) to (111)

When the base is rotated by R, the Hamiltonian becomes

𝐻′ = 𝑅 𝐻 𝑅−1

𝐻𝑋,𝑌,𝑍 = 𝑅𝐻𝑥,𝑦,𝑧𝑅
−1 = 𝑅𝐸෠1𝑅−1 = 𝐸෠1𝑅𝑅−1 = 𝐸෠1 = 𝐻𝑥,𝑦,𝑧

𝐻𝑥,𝑦,𝑧 =

𝐸𝑝𝑥 0 0

0 𝐸𝑝𝑦 0

0 0 𝐸𝑝𝑧

=E
1 0 0
0 1 0
0 0 1

= 𝐸෠1



Real structure of wurtzite GaN
The GaN4 tetrahedron is distorted in the w-GaN

crystal due to the electronic environnement !

1 =109°28’

bond length = u

666.23/8/

633.13/8/

==

==

uc

ac

1

666.23/8/

633.13/8/

=

=

uc

ac

2

u1

u2

c



Real structure of wurtzite GaN

c/a c/u

1.633 2.666

Ideal wurtzite

The cell is distorted

c shorter = tetrahedron compressed along c

2.652

2.618

2.652

c/u



From cubic to wurtzite

𝐻 =
𝐸 0 0
0 𝐸 0
0 0 𝐸

𝐻 =
𝐸 0 0
0 𝐸 0
0 0 𝐸 + Δ

GaN AlN InN

Dcr (meV) 10 -200 25 ?

NB: Dcr strongly varies with strain (see B.Gil’s plot)

cubic Wurtzite without SO

G1, (1) Z 

G15, (3) x,y,z

G6, (2) X,Y



𝐻 =
𝐸 0 0
0 𝐸 0
0 0 𝐸

𝐻 =
𝐸 0 0
0 𝐸 0
0 0 𝐸 + Δ

D= the energy difference for the z function would appear

even without terahedron deformation, as the electronic

clouds are deformed in the reduced symmetry system (same

as for spontaneous polarization) but it would be smaller

A remark



Spin orbit coupling in wurzite

𝐻𝑆𝑂 = Δ2𝐿𝑧𝑆𝑧 + Δ3(𝐿𝑥𝑆𝑥 + 𝐿𝑦𝑆𝑦)

• HSO is not diagonal in the X,Y,Z basis and terms are 

difficult to express

• HSO is not diagonal in the J basis in the wurzite case 

(contrary to cubic) as D2≠ D3. Hcr is not diagonal in the 

J basis as crystal fields does not depend on spin

• HSO is not diagonal in the L,S basis but can be

expressed easily

 Rewrite the crystal field term in the L, S basis

 Diagonalise 𝐻𝑆𝑂+ Hcr to find the new eigen states for 

the valence band



GaN valence band

GaN

G15

G7

G9

×3

×2
Crystal field

spin orbit

G7G1

G6

AlN



Why was it important 

and relevant to focus 

on the G point ?



holes

electrons

The G point is where all 

recombinations and emission will

happen. 

It is also the onset of optical

absorption and where gain appears in 

lasers

It is also where the effective masses 

are defined for electronics, at least at 

low field

Any experiment/device implying other states than G ?

Auger, high electric field (avalanche, velocity saturation…) 



CONCLUSION

• Bands appear in solids because of the overlap of a large number of 

atomic orbitals. Periodicity is not necessary for bands. However, 

periodicity give rise to specific features (bands and gaps)

• A quite small number (<10) of periods is needed to generate the 

band structure

• LCAO gives a good description of covalent semiconductors and 

also III-V semiconductors

• The crystal symmetry has an impact on the band degeneracy at 

high symmetry point (G, X….): The higher the symmetry, the 

larger the degeneracy (up to 3)


