Summer School on the physics and
Applications of Nitrides

Electrical polarization

Emmanouil (Manos) Kioupakis'-?

M MARVE|_  'Professor, Materials Science and Engineering, University of Michigan
E I : L OOQ@  ?Visiting Professor, IMX and IEM, STI, EPFL

MATERIALS SCIENCE
& ENGINEERING
UNIVERSITY OF MICHIGAN




My expertise: predictive modeling of semiconductors
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surpass the state of the art.
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Modern predictive calculations explain the properties and Material
enable the discovery of new semiconductors that can properties
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v Both for theorists and for
experimentalists




Overview

* Definition of polarization

* Polarization parameters of Il nitrides

* Polarization in quantum wells: quantum-confined Stark effect
* Polarization discontinuity and 2D carrier gases at interfaces

e Ferroelectric nitrides



Response of materials to electric fields

Piezoelectric materials: develop polarization
due to strain.

Pyroelectric materials: permanent electric
polarization.

Dielectrics

Piezoelectrics

Ferroelectrics Pyroelectrics

Ferroelectric materials: polarization can be
switched by an electric field.

All made possible by lack of inversion symmetry.

Khanbareh, PhD thesis, Delft University of Technology



Classical polarization for finite system

Forisolated molecule, the electron dipole
moment is the sum over occupied wave

functions: i B
dipole dipole
d = —ed (il
Jj +
Molecular
dipole
(a) No net dipole moment (b) Net dipole moment

chem.libretexts.org

But: position operator is not well defined for an infinite periodic solid,
polarization is not well defined if we use this formula.



Modern theory of polarization: Berry

Based on the geometric Berry phase of the electron wave functions u,, integrated over the Brillouin zone:

(2m)’

Pel - Z .- dk<ﬁnk|lvk|l’~tnk>

King-Smith and Vanderbilt, Phys. Rev. B 47, 1651 (1993)

Equivalent: sum of centers of Wannier functions: from continuous electron distribution to sum of point charges.

e
lons + electrons P = V(ZZTI'T - zl'n)
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Wannier function w) JBZ Marzari et al, Rev. Mod. Phys. 84, 1419 (1993)




Polarization parameters of lllI-nitrides

Formal polarization (C/m2)
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TABLE 1.  Effective spontaneous polarization constants in units
of C/m? of WZ GaN, AIN, and InN calculated using either the
hexagonal (H, space group P6;/mmc) or ZB (space group
F43m) reference structures.

ﬁéﬁreﬁ\ PéﬁB ref) ngB ), previously reported
GaN ‘ 1312 | —0.035 ~0.034
AIN 1.351 —0.090 —0.090
N \_1.026 /  —0.053 ~0.042
TABLE II. Calculated piezoelectric polarization constants in
units of C/m? compared with reported values from the literature.
Proper Improper Previously reported”
GaN es1 —0.551 —1.863 —0.22 to —0.55
€33 1.020 1.020 0.43 to 1.12
AIN es1 —0.676 —2.027 —0.38 to —0.81
€33 1.569 1.569 1.29 to 1.94
InN e —0.604 —1.63 —0.23 to —0.59
€33 1.238 1.238 0.39 to 1.09

Dreyer, Janotti, Van de Walle, and Vanderbilt, Phys. Rev. X6, 021038 (2016)
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Quantum confined Stark effect

a| Polar GaN LEDs b | Nonpolar GaN LEDs . :
= spatial separation of electron and hole wave
GaN InGaN GaN GaN  InGaN GaN functions in polar nitride quantum wells due to
w Wa\I/E;eISltJrr?cr:]tion Electron Wave Function polarization.
c CB )
S| Ty i T - Redshift of the emission compared to nonpolar
§ = . . 1 Ph’(_);[O/Q Ny
® | Recombination Recombination y /WU - Spatial separation of electrons and holes, reduced
L . .
c recombination rates
g ...... VB
m Hole _ In polar quantum wells: optical balance between
Wave Function Hole Wave Function . . . .
quantum-confinement-induced blueshift vs. spatial
> > P
Depth Depth separation of electrons and holes occurs for a well

1 width around 2.5-3 nm.

/

A 4

C-axis
C-axis Speck and Chichibu, MRS Bulletin 34, 304 (2009)



Carrier recombination in LEDs

InGaN :>>
QWs >

p-GaN

n-GaN

Energy A Defects Radiative Auger-Meitner
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Defect—media{ted Shockley-Read-Hall
recombination through a mid-gap
defect state. Rate increases linearly
with free-carrier density. Important at
high temperature and near surfaces,
e.g., microLEDs

Radiative recombination rat: Needs 1
e + 1 h =2 quadratic with free-carrier
density (assuming n=p)

Auger-Meitner recombination: 3
carriers scatter through Coulomb
interaction. Needs 2e + 1h, or 2h + 1e:
depends on the cube of the carrier
density.

Overall efficiency: radiative/total
recombination rate, shows a maximum.



Quantum confined Stark effect and radiative recombination

Electron (a) Radiative recombination rate ﬁll\lﬂ;wﬁﬁ
energy I
t R = Bn?
\1/,/|\ Conduction
\ band o)
' BQW — Bulk‘F;v ,{%
\\\ FE
Recombinationy,y  Hole |
wave function

-1 L ‘ ‘ ‘ ‘ ! ‘
Valence o / 17.5 18 18.5 19 19.5 20 20.5
band F;v We (Z)W" (Z) dz, l0g.(n) (cm?)
GaN InGaN GaN
> Experimental data:
Position David and Grundmann, APL 2010

Radiative recombination rate is proportional to electron-hole overlap =
polarization reduces radiative recombination rate.



Quantum confined Stark effect and Shockley-Read-Hall

Electron For a fixed defect:
energy Recombination rate
T proportional to:
L VWD Y ()d]
&\\_ Defect state E;;'_T}Q_' ~ {?ﬁ_—i ;M\g g ol
~/\ Hole g /.
\,/JM”CM” For a random distribution /65 ;&’ f ,
GaN  InGaN GaN of defects Y B ey
- 2 Experimental data:
Position ] AQW - AB“H(_Q

David and Grundmann, APL 2010

Shockley-Read-Hall recombination rate is also proportional to electron-hole
overlap = polarization reduces non-radiative recombination rate as well



Quantum confined Stark effect and Auger-Meitner recombination
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But: triple overlaps are very similar to e-h overlap. Reason: third David and Grundmann, APL 2010
carrier already overlaps with one of the recombining ones



Combined effects of QCSE on efficiency:

Electron
energy

Quantum confined Stark effect reduces all the
recombination rates by a similar factor.

Question: is polarization good or bad for LED
efficiency?

A

Conduction
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Effect of polarization on efficiency -

——430
0.6l ——445
ol 5
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J — ed(An + Bn + CI’Z ) Experimental data: David and Grundmann, APL 2010
Polarization fields slow down all recombination rates similarly, A Increasing
increase steady-state n for a given j. QCSE
* At high n: polarization favors Auger (Cn3) compared to | .77 \
. . . . . . creasin
radiative (Bn?) = reduces efficiency for given j. SCSE &
* At low n: polarization favors radiative (Bn?) over Shockley-

Read-Hall (An) = increases efficiency for given j.

—
\ 4



Does localization lead to defect-insensitive emission?

|dea originally developed for dislocations; does it apply for point defects?

Chichibu et al. Nature Mat. 5, 810 (2006)
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Vefrective(r) l. 4" |

defects

Later work on InGaN underlayers has shown that emission in InGaN is
very sensitive to point defects.

Armstrong et al. J. Appl. Phys. 117,134501 (2015)
Chen et al. Appl. Phys. Lett. 118, 111102 (2021)
Roccato et al. J. Phys. D: Appl. Phys. 54 505108 (2021)
Weatherly etal. Nano Lett. 21, 5217-5224 (2021)
Nicolas Grandjean plenary, ICSN-13
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How does localization affect defect-mediated
non-radiative recombination in InGaN?
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https://compoundsemiconductor.net/article/113729/Point_Defects_The_Ultimate_Blue_LED_Efficiency_Killers/feature



Localization: correlated reduction of re%ombmatlon rates
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Localization slows down all recombination rates similarly, increase steady- st%téww
n for a given j. e
* At high n: polarization favors Auger (Cn3) compared to radiative (Bn?) 2>
reduces efficiency for given j.
* At low n: polarization favors radiative (Bn?) over Shockley-Read-Hall (An) (but
B/A ratio decreases) = increases efficiency for given j.



Polarization discontinuity and 2D carrier gases
A b/

GaN High Electron Mobility Transistor (HEMT) [a] 0
AE. |Fp .
Gate S e 0.8
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Electronics 2018, 7(12), 377 surface donors 0o
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(here: positive charge)

—> Attracts negative charges from defects, forms two-dimensional electron gas

Speck and Chichibu, MRS Bulletin 34, 304 (2009)



Two-dimensional hole gas
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The opposite stacking sequence creates an opposite polarization sign, forms a 2D hole gas.
Hole concentration is independent of temperature = not acceptors, evidence of 2DHG.



Ferroelectric nitrides

The electrical polarization of group-Illl nitrides can be reversed
with the application of an electric field.

Observed in alloys of ScAIN, ScGaN BA[L\I, butalso MgZnO

AIN, GaN, InN: wurtzite (polar)
ScN, YN, LaN: rocksalt (nonpolar)

Non-polar element (e.g., Sc) weakens bonds in, e.g., AIN and
distorts structure.

Much larger polarization than typical ferroelectrics, e.g., PZT,
but also high coercive fields needed (~5 MV/cm, close to
dielectric breakdown).

Promise: can nitrides retain their permanent dipole moment
even at low dimensions?

0
J. Appl. Phys. 114, 133510 (2013)
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Domain walls in nitride ferroelectrics (l)
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The polarization of a ScGaN film on GaN is e
reversed by applying an electric field, and
the resulting structures are imaged with
electron microscopy.
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Nature 641, 76-82 (2025)



Domain walls in nitride ferroelectrics (ll)

M-polar VDW

o
Two types of domain walls: -] ol

{/ ScGaN

Vertical domain walls (planes
parallel to c-axis). Common in IlI-
nitride growth. All atoms at the
interface are bonded, no dangling
bonds. Low formation energy.

Hornizontal domain_wall

Horizontal domain walls (planes i
perpendicular to c-axis). Polarization
inversion through a thin horizontal

region of only a few atomic layers. SIS
Dangling bond at the interface give vy o R |

rise to midgap defect states and
strong polarization discontinuity. Why
are they stable?

Nature 641, 76-82 (2025)
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Domain walls in nitride ferroelectrics (lll)

Universal cancellation of polarization discontinuity by dangling bonds.

1 A
Dipole moment per cation: P:3e[2—UjCZ £—

Polarization: P=2p/V,= 666 ~u A/( T]

Surface bound charge: 0,=2|P| =

u"‘-. ‘-’I.'."“I sk, .
il .‘u‘\ il .l
F‘—_‘_-_-_‘_'_'_‘—l-
Cation charge: +3e

: J3 3
Dangling bond Charge: O'eZ —/(azz zmz" Charge transfer per bond: _Ze
Record high, but not mobile.

Dipole moment:
_.3 1_ 5
p=3e|;-u)cz

.-~ Displacement:

| (e

- Negative charge of dangling bonds cancels out the charge N charge: -3¢

from polarization discontinuity. \

- A universal mechanism for all tetrahedral ferroelectrics that
explains the unusual stability of antipolar domain walls. Nature 641, 76-82 (2025)
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