

GaN electronic devices

Elison Matioli

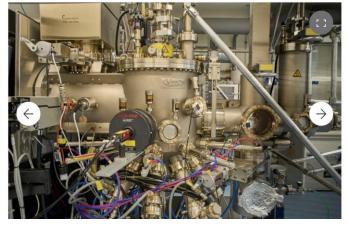

Institute of Electrical and Micro-engineering

Power and Wide-band-gap Electronics Research (POWERlab)

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

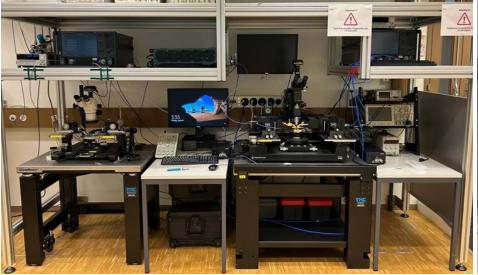
Nitrides environment at EPFL

Epitaxy Platform (EPiX) at EPFL


GaN vertical chamber CCS MOVPE reactor

GaN horizontal chamber MOVPE reactor

III-V dual chamber MOVPE reactor


MBEs - III-V and Nitrides

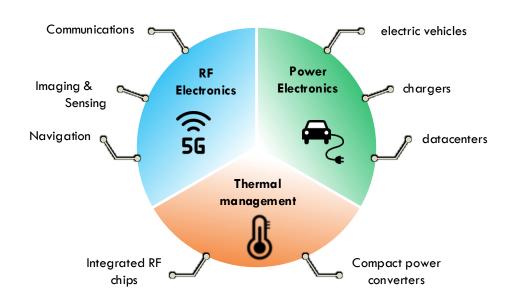
https://www.epfl.ch/research/facilities/epix/

Introduction to our lab - POWERIab at EPFL

RF and THz measurement systems

Cryogenic measurement systems (down to 4K)

Power measurement systems (10kV, DC and pulsed) Thermal and Microfluidic measurement systems


Introduction to POWERIab at EPFL

Challenges for more efficient electronic devices

RF Electronics

Larger Breakdown voltage Increase cut-off frequency Higher Pxf²

Thermal management

Efficient thermal management Extract heat closer to the junction

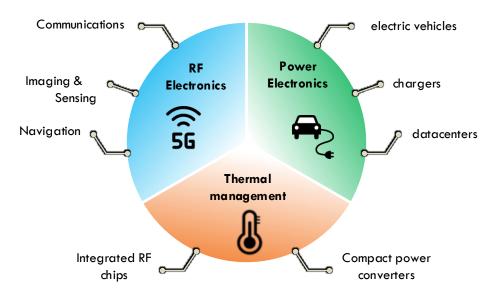
Power Electronics

Larger breakdown voltage Efficient dynamic performance

Introduction to POWERIab at EPFL

Challenges for more efficient electronic devices

RF Electronics


Lower losses (lower resistances) Larger Breakdown voltage Increase cut-off frequency Higher Pxf²

New RF and THz devices

Nanoplasma devices: **Nature**, 579 (7800), 534-539, (2020)

Electronic metadevices: **Nature** 614 (7948), 451-455 (2023)

Power Electronics

Lower losses (lower resistances) Larger breakdown voltage Efficient dynamic performance

Lateral and vertical devices Semiconductors: GaN, diamond

Thermal management

Efficient thermal management Extract heat closer to the junction

Effective microfluidic cooling

Multichannel devices: Nature Electronics 2021 Diamond transistor on GaN: IEEE Electron Device Letters, 2020

Microfluidic cooling: Nature 585 (7824), 211-216 (2020)

Outline of the electronic module

Lecture I: Electronic devices

- Introduction
- Heterostructures
- Lateral devices: HEMTs

Lecture II: RF devices

- Equivalent circuit and FOM: important aspects
- Technologies to improve RF performance

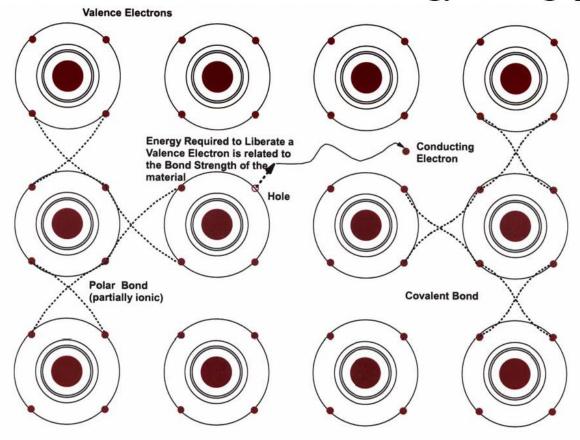
Lecture III: Lateral Power devices

- E- and D-mode devices
- Reaching low resistance and high voltage
- current commercial technology
- Losses in GaN power devices

Lecture IV: Vertical Power devices

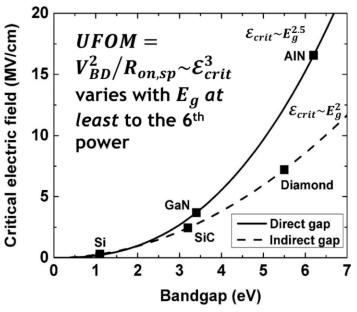
- Introduction
- Vertical devices: GaN PN diodes and MOSFETs
- Novel concepts in vertical power electronics

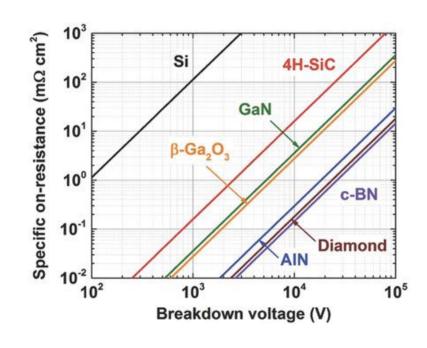
Bonus: Novel trends



GaN materials for electronics

Energy band-gap


What is a Semiconductor Energy Bandgap?


Wide-band-gap semiconductors

Interest of wide-band-gap materials for power electronics

Hudgins et al., IEEE Trans. on Pow. Elec. 18, 3 (2003), Tsao et al., Advanced Elec. Mat. 4, 1600501 (2018)

Ideal Specific On-Resistance (R_{ON.SP}):

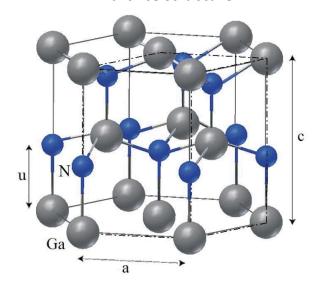
$$R_{\rm ON,SP} = \frac{4BV^2}{\epsilon_{\rm S}\mu_{\rm n}E_{\rm C}^3}$$

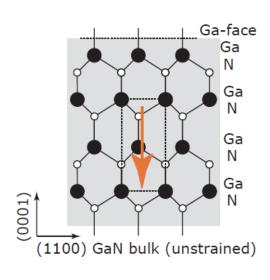
R_{on,sp} is related to material properties

Much larger voltage blocking with a smaller resistance and size

What is truly unique of III-Nitrides?

Case for GaN: Basics of III-Nitrides

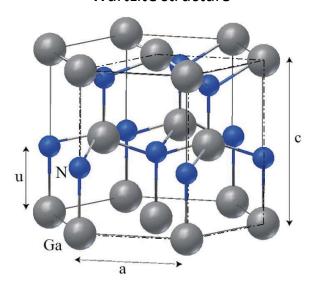

What is truly unique of III-Nitrides?

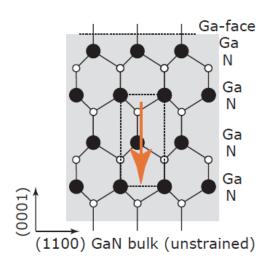

Spontaneous polarization and piezoelectric constants of III-V nitrides

Fabio Bernardini and Vincenzo Fiorentini
INFM – Dipartimento di Scienze Fisiche, Università di Cagliari, I-09124 Cagliari, Italy

David Vanderbilt Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, U.S.A.

Wurtzite structure





Case for GaN: Basics of III-Nitrides

Wurtzite structure

PHYSICAL REVIEW X 6, 021038 (2016)

Correct Implementation of Polarization Constants in Wurtzite Materials and Impact on III-Nitrides

Cyrus E. Dreyer, ^{1,2} Anderson Janotti, ^{1,*} Chris G. Van de Walle, ¹ and David Vanderbilt²

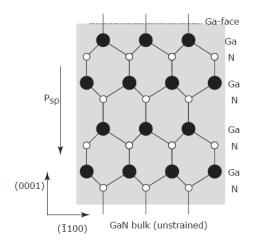
¹ Materials Department, University of California, Santa Barbara, California 93106-5050, USA

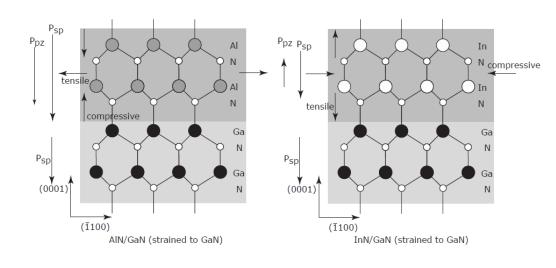
² Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08845-0849, USA

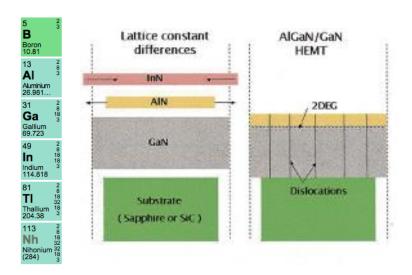
(Received 22 December 2015; published 20 June 2016)

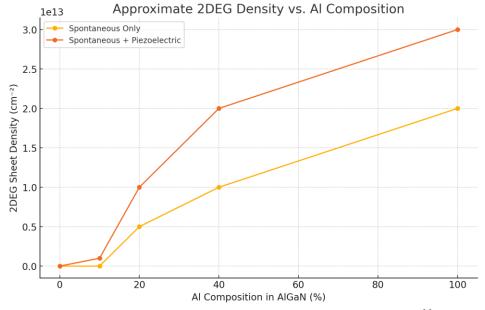
1. Spontaneous polarization

	$P_{ m eff}^{ m (H ref)}$	$P_{ m eff}^{ m (ZBref)}$	$P_{\rm eff}^{\rm (ZB ref)}$, previously reported ^a
GaN	1.312	-0.035	-0.034
AlN	1.351	-0.090	-0.090
InN	1.026	-0.053	-0.042


2. Piezoelectric polarization

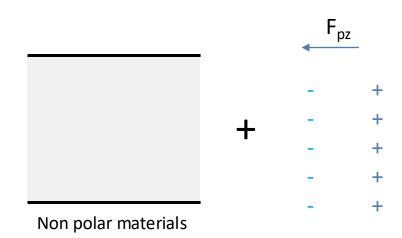

		Proper	Improper	Previously reported ^a
GaN	e_{31}	-0.551	-1.863	-0.22 to -0.55
	e_{33}	1.020	1.020	0.43 to 1.12
AlN	e_{31}	-0.676	-2.027	-0.38 to -0.81
	e_{33}	1.569	1.569	1.29 to 1.94
InN	e_{31}	-0.604	-1.63	-0.23 to -0.59
	e_{33}	1.238	1.238	0.39 to 1.09


Basics of III-Nitrides


EPFL

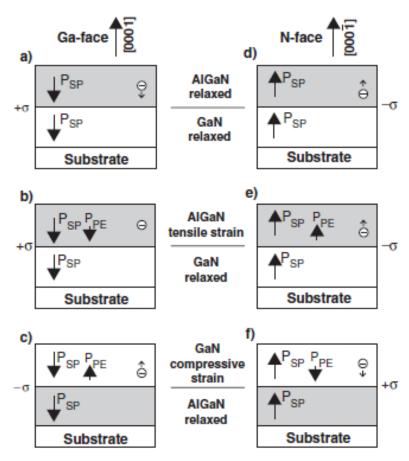
Effect of Piezoelectric Polarization

Case for GaN: Basics of III-Nitrides

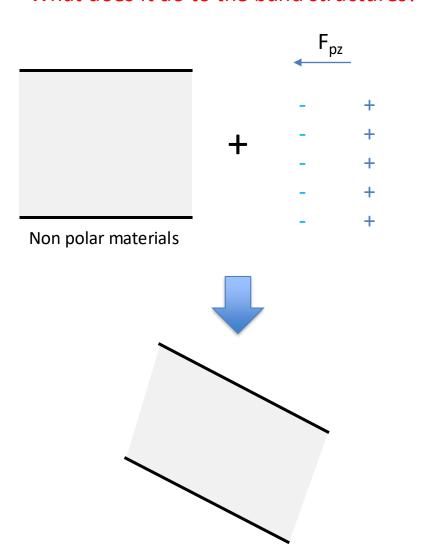


Spontaneous and piezo contributions

C. Wood et al. "Polarization effects in Semiconductors"


What does it do to the band structures?

Case for GaN: Basics of III-Nitrides



Spontaneous and piezo contributions

C. Wood et al. "Polarization effects in Semiconductors"

What does it do to the band structures?

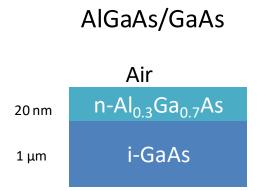
Polarization fields create slopes in the bands!

How to make useful devices

Uniqueness of III-Nitrides

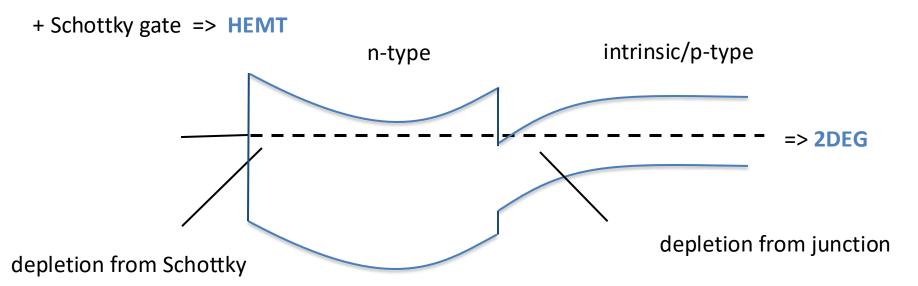
Very unique property of Nitrides:

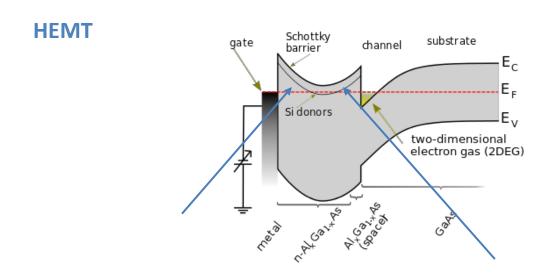
Al_{0.3}Ga_{0.7}As


1. Spontaneous and piezoelectric polarization fields

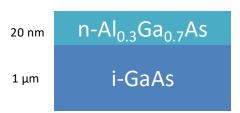
GaAs

2. Several compounds can be used to form heterostructures GaN, AlN, AlGaN, InGaN, InAlN, InAlGaN, ScAIN, etc...

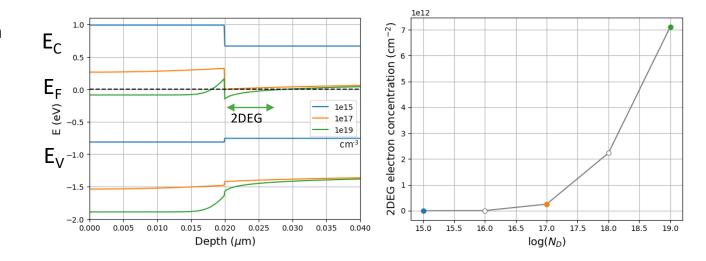



Simple case: AlGaAs/GaAs

Simple case: AlGaAs/GaAs



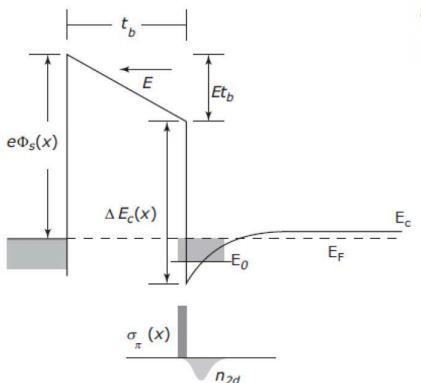
Simple case: AlGaAs/GaAs


AlGaAs/GaAs

Vary donor concentration

Model details

- Uniform doping profile
- No surface states



2DEG is formed by n-doping the AlGaAs barrier

Expressions for Ns in GaN

Simplified analytical description of GaN HEMT: charge control

$$e\Phi_s - E \times t_b - \Delta E_c + E_0 + (E_F - E_0) = 0$$

From Gauss' law:

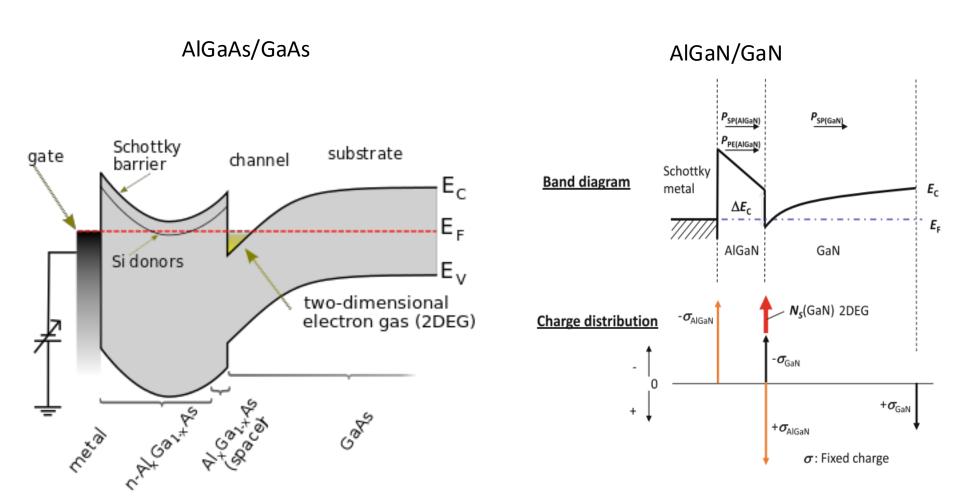
$$E = e(\sigma_{\pi}(x) - n_{2d})/\epsilon(x)$$

Using 2D density of states and assuming a triangular well:

$$E_F - E_0 = \frac{\pi \hbar^2}{m^*} n_{2d}$$

$$E_0 \approx \left(\frac{9\pi\hbar e^2 n_{2d}}{8\epsilon(x)\sqrt{8m^*}}\right)^{2/3}$$

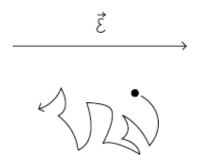
Express n_{2D} analytically and neglect E_{F} dependence on n_{2D}

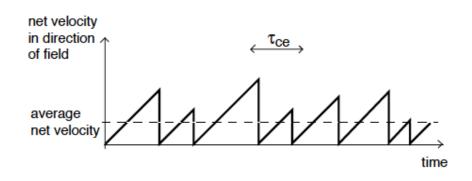

$$\sigma_{\pi}(x)$$
 total polarization charge (piezo and spontaneous)

$$\mathcal{E}(\mathcal{X})$$
 absolute electric permittivity

$$n_{2d} = \sigma_{\pi} - \frac{\epsilon(x)}{t_b} \frac{e\Phi_s - \Delta E_c + E_F}{e^2}$$

Summary: difference between Arsenides and Nitrides




Why are these structures important?

Electron mobility

In the presence of an electric field, electrons drift:

Drift velocity

$$v_e^{drift} = -\frac{q\mathcal{E}\tau_{ce}}{m_{ce}^*}$$

$$v_e^{drift} = -\mu_e \mathcal{E}$$

$$\mu_e \equiv \text{electron mobility } [cm^2/V \cdot s]$$

Electron mobility: Corresponds to the ease of carrier motion in response to *E*. It depends on the strength of the scattering mechanisms.

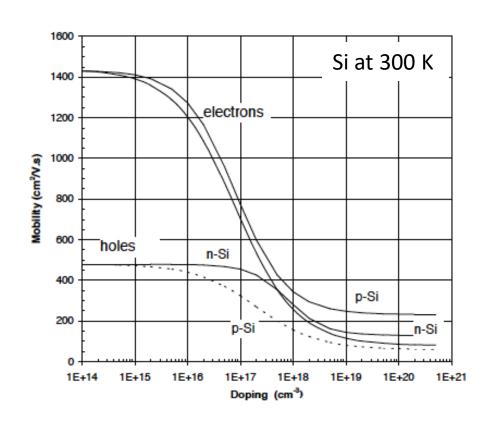
Electron mobility

In the presence of an electric field, electrons drift:

$$v_e^{drift} = -\mu_e \mathcal{E}$$

$$v_h^{drift} = \mu_h \mathcal{E}$$

Mobility depends on:


- doping level
- whether carrier is **majority** or **minority-type**.

at low n:

- Mobility is limited by phonon scattering
- thus independent of doping.

at high *n*:

- Mobility is limited by ionized impurity scattering;
- It is not a strong function of the type of dopant, but only on its concentration.

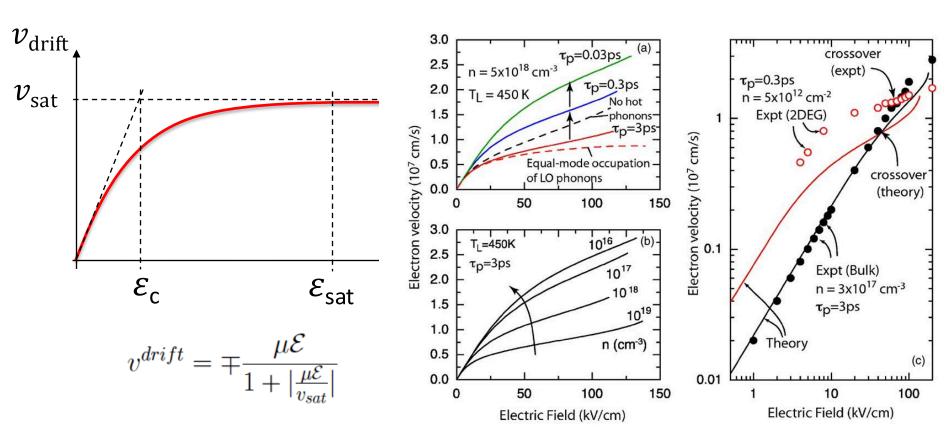
Electron mobility

Increasing temperature and increasing doping results in reduction of mobility.

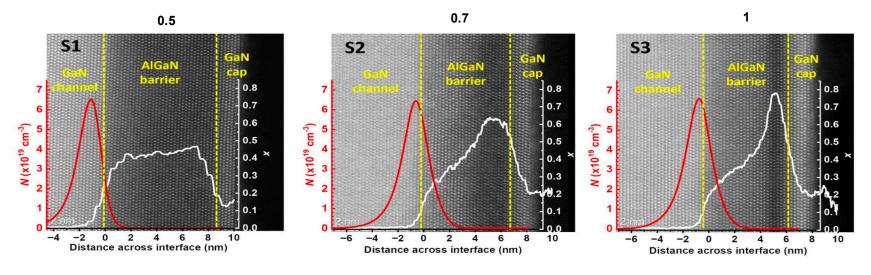
Increasing temperature: increases the number of phonons, which increases the probability that an electron will be scattered by a phonon.

Increasing doping: each dopant atom can scatter electrons.

Thus:


higher doping level -> lower mobility higher temperature -> lower mobility

Velocity saturation


The linear relationship between drift velocity and electric field is no longer valid at high fields

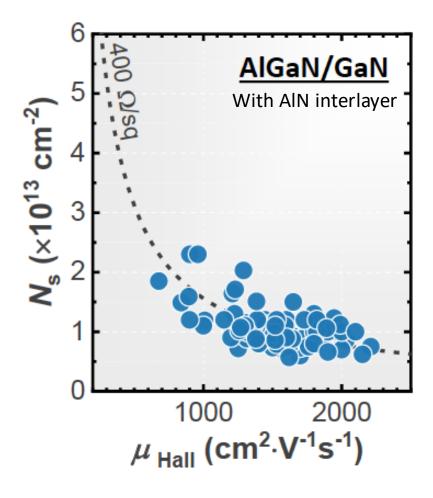
Jacob Khurgin, Yujie J. Ding, Debdeep Jena; Hot phonon effect on electron velocity saturation in GaN: A second look. *Appl. Phys. Lett.* 17 December 2007; 91 (25): 252104.

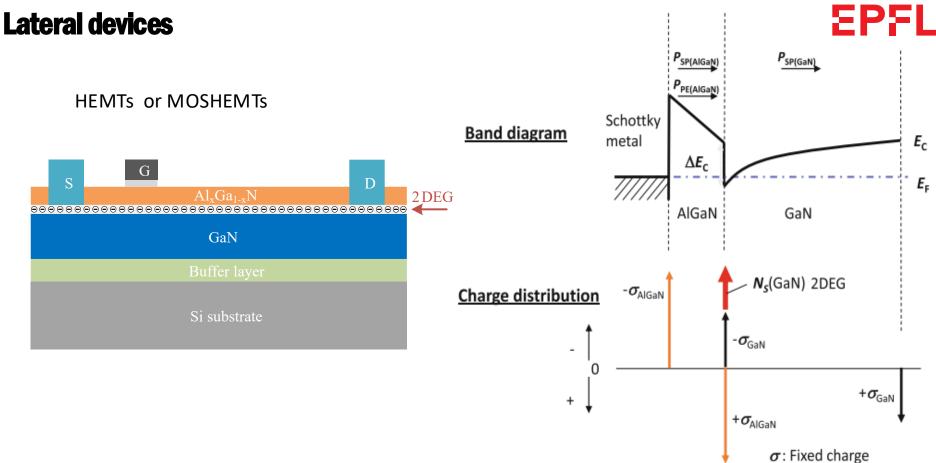
Alloy scattering

Papamichail, Alexis, et al. "Impact of Al profile in high-Al content AlGaN/GaN HEMTs on the 2DEG properties." Applied Physics Letters 125.12 (2024).

Alloy scattering in Al_xGa_{1-x}N: local potential fluctuations due to the randomly distributed atoms scatter electrons

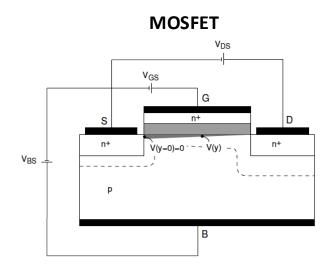
Sample	S_1	S ₂	S ₃
Nominal barrier thickness, $t_{\rm b}^{\rm n}$ (nm)	8.0	5.0	4.5
Measured barrier thickness, t_b (nm)	8.2	7.1	6.1
Nominal Al content	0.50	0.70	1.00
Measured peak Al content	0.46	0.64	0.78
$R_{\rm S}$ (Ω /sq) (vendor)	335	431	542
$R_{\rm S}$ (Ω /sq) (Eddy current)	290	370	570
$R_{\rm S}$ ($\Omega/{\rm sq}$) (Hall)	298	350	415
$N_{\rm S}~(\times 10^{13}~{\rm cm}^{-2})$ (Lehighton)	1.24	1.23	0.88
$N_{\rm S}~(\times 10^{13}~{\rm cm}^{-2})~({\rm Hall})$	1.10	1.42	1.51
$N_{\rm S}~(imes 10^{13}~{ m cm}^{-2})$ (simulated)	1.55	1.75	1.67
μ (cm ² /Vs) (Lehighton)	1730	1390	1270
μ (cm ² /Vs) (Hall)	1775	1270	1045


Strong grading in the Al profile leads to increased wavefuntion overlap with the barrier


→ Increased alloy scattering → reduced mobility

Trade-off between carrier density and mobility in a 2DEG

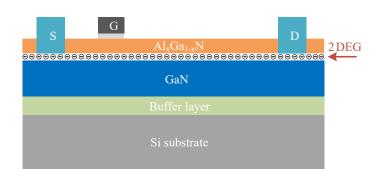
Intrinsic trade-off: in a 2DEG increasing n_s deteriorates μ



- GaN system: no need for doping (Contrary to AlGaAs/GaAs)
- Mobilities over 2200 cm²/V⋅s
- Large carrier density, over 10¹³cm⁻²
- Carriers are induced by donor-like surface states at the AlGaN surface facilitated by spontaneous and piezoelectric polarization electric field inside the AlGaN layer

High Electron Mobility Transistors (HEMTs)

Comparison between MOSFETs and HEMTs


Mobility of the inverter channel is low

Electrons propagate in a doped medium

Enhancement-mode device:

normally-off operation

HEMT

Due to the 2DEG:

- Superior mobility
- Higher frequency
- Lower noise figure
- If GaN: higher power density

Depletion-mode device:

normally-on operation